Introduction to Word2vec and its application to find predominant word senses

> Huizhen Wang NTU CL Lab 2014-8-21

Part 1: Introduction to Word2vec

- What is word2vec?
- **Quick Start and demo**
- **Training Model**
- **Applications**

What is word2vec?

- Word2vec is a tool which computes vector representations of words.
- **Notal meaning and relationships between words are encoded** spatially
- \blacksquare learns from input texts
- **Developed by Mikolov, Sutskever, Chen, Corrado and Dean in** 2013 at Google Research

Quick Start

- Download the code:
	- svn checkout <http://word2vec.googlecode.com/svn/trunk/>
- Run 'make' to compile word2vec tool
- Run the demo scripts: ./demo-word.sh and ./demo-phrases.sh

Different versions of word2vec

- Google code: <http://word2vec.googlecode.com/svn/trunk/>
- \blacksquare 400 lines C++11 version: https://github.com/jdeng/word2vec
- **Python version:** http://radimrehurek.com/gensim/models/word2vec.html
- Java :https://github.com/ansjsun/word2vec_java
- **Parallel java version: https://github.com/siegfang/word2vec**
- CUDA version: https://github.com/whatupbiatch/cuda-word2vec

- $vector('Paris')$ vector('France') + vector('Italy') = ?
- \blacksquare vector('king') vector('man') + vector('woman') = ?

Similar words are closer together

- spatial distance corresponds to word similarity
- **Notable 10.5 are close together** \Leftrightarrow **their "meanings" are similar**
- notation: word $w \rightarrow vec[w]$ its point in space, as a position vector.
- **e.g. vec**[woman] = $(0.1, -1.3)$

Word relationships are displacements

- **The displacement (vector) between the points of two words** represents the word relationship.
- Same word relationship \Rightarrow same vector

Source: Linguistic Regularities in Continuous Space Word Representations, Mikolov et al. 2013

E.g. vec[queen] - vec[king] = vec[woman]- vec[man] $_{11}$

learn the concept of capital cities

12

Semantic-syntactic word relationship

Table 1: Examples of five types of semantic and nine types of syntactic questions in the Semantic-Syntactic Word Relationship test set.

Examples of the learned relationships

Table 8: Examples of the word pair relationships, using the best word vectors from Table $\frac{A}{A}$ (Skipgram model trained on 783M words with 300 dimensionality).

efficiency

Table 6: Comparison of models trained using the DistBelief distributed framework. Note that training of NNLM with 1000-dimensional vectors would take too long to complete.

Model	Vector	Training	Accuracy $[\%]$			Training time
	Dimensionality	words				[days x CPU cores]
			Semantic	Syntactic	Total	
NNLM	100	6В	34.2	64.5	50.8	14 x 180
CBOW	1000	6В	57.3	68.9	63.7	2 x 140
Skip-gram	1000	6В	66.1	65.1	65.6	2.5×125

What's in a name?

- **Assume the Distributional Hypothesis (D.H.) (Harris, 1954):**
	- " "You shall know a word by the company it keeps" (Firth, J. R. 1957:11)

Word2vec as shallow learning

- **u** word2vec is a successful example of "shallow" learning
- **word2vec can be trained as a very simple neural network**
	- single hidden layer with no non-linearities
	- no unsupervised pre-training of layers (i.e. no deep learning)
- word2vec demonstrates that, for vectorial representations of words, shallow learning can give great results.

Two approaches: CBOW and Skipgram

- word2vec can learn the word vectors via two distinct learning tasks, CBOW and Skip-gram.
	- CBOW: predict the current word w0 given only C
		- Hierarchical softmax
		- **Negative sampling**
	- **Skip-gram: predict words from C given w0**
		- **Hierarchical softmax**
		- Negative sampling
- **Skip-gram produces better word vectors for infrequent words**
- CBOW is faster by a factor of window size more appropriate for larger corpora

A Neural Model (NNLM)

CBOW (Continuous bag of words)

- **Predicting the** current word based on the context
- **Disregard grammar** and work order
- **Share the weight of** each words
- **Training around** words

Continuous Skip-gram Model

- **Maximize** classification of a word based on another word in the same sentence
- **The more distant** words are usually less related to the current word than those close to it.

Comparison of publicly available word vectors on the Semantic-Syntactic Word Relationship test set, and word vectors from our models. Full vocabularies are used

Main Parameters for training

- \blacksquare 1. –size: size of word vector
- \blacksquare 2. –window: max skip length between words
- \blacksquare 3. –sample: threshold for occurrence of words
- \blacksquare 4. –hs: using Hierarchical softmax
- \blacksquare 5. –negative: number of negative examples
- 6. –min-count: discard words that appear less than $#$ times
- \blacksquare 7. –alpha: the starting learning rate
- 8. –cbow: using CBOW algorithm or skip-gram model

Applications

- **Nord segmentation**
- **Nord cluster**
- **Find synonym**
- **Part-of-speech tagging**

application to machine translation

- **train word representations for e.g. English and Spanish** separately
- **the word vectors are similarly arranged!**
- **EXT** learn a linear transform that (approximately) maps the word vectors of English to the word vectors of their translations in Spanish
- same transform for all vectors

application to machine translation

Source: Exploiting Similarities among Languages for Machine Translation, Mikolov, Quoc, Sutskever, 2013

applications to machine translation results

 English - Spanish: can guess the correct translation in 33% - 35% percent of the cases.

Source: Exploiting Similarities among Languages for Machine Translation, Mikolov, Quoc, Sutskever, 2013

Reference

- **Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.** Efficient Estimation of Word Representations in Vector Space. In Proceedings of Workshop at ICLR, 2013.
- **Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and** Jeffrey Dean. Distributed Representations of Words and Phrases and their Compositionality. In Proceedings of NIPS, 2013.
- **Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic** Regularities in Continuous Space Word Representations. In Proceedings of NAACL HLT, 2013.

Part 2: Finding Predominant Word Senses in Untagged text

Motivation: e.g. Dog as a noun

Noun

- (42) S: (n) **dog#1**, domestic dog#1, Canis familiaris#1 (a member of the genus Canis (probably descended from the common wolf) that has been domesticated by man since prehistoric times; occurs in many breeds) "the dog barked all night"
- S: (n) frump#1, $\log 2$ (a dull unattractive unpleasant girl or woman) "she got a reputation as a frump"; "she's a real dog"
- S: (n) $\log 43$ (informal term for a man) "you lucky dog"
- S: (n) cad#1, bounder#1, blackguard#1, $dog#4$, hound#2, hee $#3$ (someone who is morally reprehensible) "you dirty dog"
- S: (n) frank#2, frankfurter#1, hotdog#3, hot dog#3, **dog#5**, wiener#2, wienerwurst#1, weenie#1 (a smooth-textured sausage of minced beef or pork usually smoked; often served on a bread roll)
- S: (n) paw#1, detent#1, click#3, **dog#6** (a hinged catch that fits into a notch of a ratchet to move a wheel forward or prevent it from moving backward)
- S: (n) andiron#1, firedog#1, $\frac{log#7}{log+6}$, dog-iron#1 (metal supports for logs in a fireplace) "the andirons were too hot to touch"

Predominant Score of word "dog_n"

- Synset('dog.n.01') 24.26
- **Synset('cad.n.01')** 17.19
- Synset('dog.n.03') 17.04
- Synset('frump.n.01') 16.75
- Synset('andiron.n.01') 12.91
- **Synset('pawl.n.01')** 12.34
- Synset('frank.n.02') 7.95

Introduction

- **Dur work is aimed at discovering the predominant senses from** raw text.
	- Hand-tagged data is not always available
	- Can produce predominant senses for the domain type required.
- **Ne believe that automatic means of finding a predominant** sense can be useful for systems that use it as backing-off and as lexical acquisition under limiting-size hand-tagges sources.

Method (McCarthy et al. 2004)

Figure 1

The prevalence ranking process for the noun star.

Our Method

Figure 1

The prevalence ranking process for the noun star.

Calculation Measures

- **DSS (Distributional Similarity Score)**
	- **K-Nearest Neighbor (k-NN)**
		- Context Window Length = $3, 4, 5, 6, 7$
		- **Frequency as weight**
	- Word2vec
- **SSS (Semantic Similarity Score)**
	- **Wu-Palmer Similarity (wup)**
	- **Leacock-Chodorow Similarity (Ich) (better)**

Corpora Details (wikipedia dumps)

Multi-Word Expression (MWE in the Wordnet)

- **Taylor** NNP V. NNP **Duangle Strutted NNP**
- **States** NNPS
- **Taylor** NNP
- V. NNP
- **United States** NP

Experimental results – part of English

Experimental results – Mandarin Chinese

Experimental results – Indonesian

Conclusions

- We have devised a method that use raw corpus data to automatically find a predominant sense of nouns in WordNet.
- **EXEDER** we investigated the effect of the frequency and choice of distributional similarity measure and apply our method for words whose PoS other than noun. –Already working with all PoS
- In the future we will look at applying to domain specific subcorpora
- Have successfully applied our processes to multiple languages (with some limitations)
	- The only sense ranking available for many languages!